1 Introduction
Tanzania (TZ): ≈10 million tonnes/yr of construction and demolition (C&D) waste produced annually
Population growth increases:
- C&D waste
- need of construction materials, etc
Disproportionate nature of demand to availability of building material resources will likely result in:
- depletion of natural resources
- conflict among users, etc.
A more innovative and sustainable building technology is therefore needed!

2 Concept
SlimBouwen
Objective
- Improve performance of building process and product
Strategy
- Reduction of material mass and C&D waste
Approach
- Reusing, recycling and upcycling of C&D waste
Results
- Production of building material (e.g. *crete blocks) from C&D waste
- Scientific knowledge & understanding for the applicability of SlimBouwen in building construction in Tanzania

3 Research Methodology
What are the opportunities and constraints in applying SlimBouwen and recycling in Tanzania?
- Apply SlimBouwen for sustainable construction in TZ
- C&D waste are recycled into building blocks
- Developed building blocks are laboratory-tested conform local and international standards
- Assessment of the blocks using Sustainability Tool

4 Conclusion
SlimBouwen is capable of reducing:
- over-extraction of materials from source
- C&D waste by more than 50%

Production of building blocks from recycled and upcycled C&D waste will:
- aid in increasing building material stock
- provide current solution for future demand

Thus, building construction becomes sustainable through a cradle to cradle (C2C) approach

5 Acknowledgement
Many thanks go to my co-authors for their cooperation, Dr. Ir. P. A. Erkelens and to my sponsor NFP-NUFFIC